The LIM homeodomain protein dLim1 defines a subclass of neurons within the embryonic ventral nerve cord of Drosophila
نویسندگان
چکیده
Members of the LIM homeodomain family of transcription factors have been implicated in specifying cell identity in a range of species. In Drosophila three LIM homeobox genes, apterous, lim3 and isl, have been shown to control axon pathfinding of subsets of neurons within the embryo. Here we describe the isolation and characterization of another LIM homeobox gene in Drosophila termed dlim1, a homolog of the vertebrate Lim-1 gene. The sequence and expression of dLim1 is highly related to its vertebrate homologs. Within the Drosophila embryo, dLim1 is expressed in the head primordia, the brain lobes, and in distinct sets of motorneurons and interneurons within the ventral nerve cord. Comparatively in vertebrates, Lim-1 (Lhx1) along with Lim-3 (Lhx3), Gsh-4 (Lhx4), Isl-1 and Isl-2 are expressed in developing motorneurons along the spinal column, where their overlapping expression suggests a role for these genes in the establishment of specific motorneuron subtypes. dLim1 is absent from all cells expressing Isl, Lim3, and Apterous, indicating that these proteins function independently within the Drosophila embryo. To investigate the function of dlim1, we generated loss-of-function mutations within the locus. Our findings show that dlim1 is an essential gene that when mutated results in lethality near the larval-pupal boundary. In contrast to vertebrate Lim-1, dlim1 has no apparent role in anterior patterning of the Drosophila embryo. Our analysis shows that dlim1 has been evolutionarily conserved, however the Drosophila lim1 gene exhibits unique properties that distinguishes it from its vertebrate homologs.
منابع مشابه
Specification of Drosophila motoneuron identity by the combinatorial action of POU and LIM-HD factors.
In both vertebrates and invertebrates, members of the LIM-homeodomain (LIM-HD) family of transcription factors act in combinatorial codes to specify motoneuron subclass identities. In the developing Drosophila embryo, the LIM-HD factors Islet (Tailup) and Lim3, specify the set of motoneuron subclasses that innervate ventral muscle targets. However, as several subclasses express both Islet and L...
متن کاملThe Drosophila islet Gene Governs Axon Pathfinding and Neurotransmitter Identity
We have isolated the Drosophila homolog of the vertebrate islet-1 and islet-2 genes, two members of the LIM homeodomain family implicated in the transcriptional control of motor neuronal differentiation. Similar to vertebrates, Drosophila islet is expressed in a discrete subset of embryonic motor neurons and interneurons that includes the dopaminergic and serotonergic cells of the ventral nerve...
متن کاملGata2 specifies serotonergic neurons downstream of sonic hedgehog.
Distinct classes of serotonergic (5-HT) neurons develop along the ventral midline of the vertebrate hindbrain. Here, we identify a Sonic hedgehog (Shh)-regulated cascade of transcription factors that acts to generate a specific subset of 5-HT neurons. This transcriptional cascade is sufficient for the induction of rostral 5-HT neurons within rhombomere 1 (r1), which project to the forebrain, bu...
متن کاملLhx9: a novel LIM-homeodomain gene expressed in the developing forebrain.
A novel LIM-homeodomain gene, Lhx9, was isolated by degenerate RT-PCR followed by mouse embryonic library screening. Lhx9 cDNA encodes a protein that is most closely related to Drosophila apterous and rodent Lhx2 proteins. The Lhx9 spatiotemporal pattern of expression during embryogenesis was similar but distinct from Lhx2. Highest expression levels were found in the diencephalon, telencephalic...
متن کاملA Postmitotic Role for Isl-Class LIM Homeodomain Proteins in the Assignment of Visceral Spinal Motor Neuron Identity
LIM homeobox genes have a prominent role in the regulation of neuronal subtype identity and distinguish motor neuron subclasses in the embryonic spinal cord. We have investigated the role of Isl-class LIM homeodomain proteins in motor neuron diversification using mouse genetic methods. All spinal motor neuron subtypes initially express both Isl1 and Isl2, but Isl2 is rapidly downregulated by vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 88 شماره
صفحات -
تاریخ انتشار 1999